Estimating model error covariance matrix parameters in extended Kalman filtering
نویسندگان
چکیده
The extended Kalman filter (EKF) is a popular state estimation method for nonlinear dynamical models. The model error covariance matrix is often seen as a tuning parameter in EKF, which is often simply postulated by the user. In this paper, we study the filter likelihood technique for estimating the parameters of the model error covariance matrix. The approach is based on computing the likelihood of the covariance matrix parameters using the filtering output. We show that (a) the importance of the model error covariance matrix calibration depends on the quality of the observations, and that (b) the estimation approach yields a welltuned EKF in terms of the accuracy of the state estimates and model predictions. For our numerical experiments, we use the two-layer quasi-geostrophic model that is often used as a benchmark model for numerical weather prediction.
منابع مشابه
Cardiac motion and material properties analysis using data confidence weighted extended Kalman filter framework
A biomechanical model constrained stochastic finite element framework has been developed to jointly estimate myocardium kinematics and material parameters from medical image sequence. In an extended Kalman filter formulation, we have observed that the augmented state error covariance matrix must be carefully chosen in order to avoid divergence. In this paper, we incorporate confidence measures ...
متن کاملTuning of Extended Kalman Filter using Self-adaptive Differential Evolution Algorithm for Sensorless Permanent Magnet Synchronous Motor Drive
In this paper, a novel method based on a combination of Extended Kalman Filter (EKF) with Self-adaptive Differential Evolution (SaDE) algorithm to estimate rotor position, speed and machine states for a Permanent Magnet Synchronous Motor (PMSM) is proposed. In the proposed method, as a first step SaDE algorithm is used to tune the noise covariance matrices of state noise and measurement noise i...
متن کاملInternational Journal for Numerical Methods in Fluids
Data assimilation in a two-dimensional hydrodynamic model for bays, estuaries and coastal areas is considered. Two different methods based on the Kalman filter scheme are presented. These include (1) an extended Kalman filter in which the error covariance matrix is approximated by a matrix of reduced rank using a square root factorisation (RRSQRT KF), and (2) an ensemble Kalman filter (EnKF) ba...
متن کاملEstimating Lithium-Ion Battery State of Charge and Parameters Using a Continuous-Discrete Extended Kalman Filter
A real-time determination of battery parameters is challenging because batteries are non-linear, time-varying systems. The transient behaviour of lithium-ion batteries is modelled by a Thevenin-equivalent circuit with two time constants characterising activation and concentration polarization. An experimental approach is proposed for directly determining battery parameters as a function of phys...
متن کاملA New Adaptive Extended Kalman Filter for a Class of Nonlinear Systems
This paper proposes a new adaptive extended Kalman filter (AEKF) for a class of nonlinear systems perturbed by noise which is not necessarily additive. The proposed filter is adaptive against the uncertainty in the process and measurement noise covariances. This is accomplished by deriving two recursive updating rules for the noise covariances, these rules are easy to implement and reduce the n...
متن کامل